На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:
строительное дело
крупноразмерная пустая порода (используемая, напр. для возведения насыпей)
общая лексика
свалка
['gɔbpail]
общая лексика
террикон(ик) (особ. угольный)
['spɔilbæŋk]
общая лексика
кавальер
насыпь по бокам выемки
отвал
добыча полезных ископаемых
отвал породы
террикон(ик)
строительное дело
отвал грунта
In the mathematical fields of geometry and topology, a coarse structure on a set X is a collection of subsets of the cartesian product X × X with certain properties which allow the large-scale structure of metric spaces and topological spaces to be defined.
The concern of traditional geometry and topology is with the small-scale structure of the space: properties such as the continuity of a function depend on whether the inverse images of small open sets, or neighborhoods, are themselves open. Large-scale properties of a space—such as boundedness, or the degrees of freedom of the space—do not depend on such features. Coarse geometry and coarse topology provide tools for measuring the large-scale properties of a space, and just as a metric or a topology contains information on the small-scale structure of a space, a coarse structure contains information on its large-scale properties.
Properly, a coarse structure is not the large-scale analog of a topological structure, but of a uniform structure.